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Abstract. For polygons on the simple cubic lattice there is an important theorem due to Lacher
and Sumners which shows that the writhe of a polygon is the average of the linking numbers of the
polygon and its pushoffs in four particular directions. This implies that the writhe of a polygon on
the simple cubic lattice is always rational. We prove a related theorem for the face-centred cubic
(fcc) lattice but show that, on this lattice, the probability that a polygon of lengthn has irrational
writhe tends to unity asn tends to infinity. In addition, we show that the expectation of the absolute
value of the writhe increases at least as fast as

√
n for largen.

1. Introduction

Long polymer molecules can be highly self-entangled and there has been recent interest in
describing and quantifying the entanglement complexity of ring polymers. Knotting and
linking are features of topological entanglement complexity but polymers can be geometrically
entangled even when they are unknotted and unlinked. This paper will be concerned with
writhe (Wr) which is a useful measure of geometrical entanglement complexity and measures
the signed non-planarity of the ring polymer. Writhe has been widely used to describe and
understand the geometrical entanglement complexity of DNA (Baueret al 1980, Bates and
Maxwell 1993).

The writhe of a simple closed curve inR3 can be defined as follows. First orient the
curve. Choose a directionµ and project the curve in this direction onto a plane. For
almost all directionsµ the projected curve will have all crossings transverse. The immediate
neighbourhood of each crossing will look like two oriented curve segments one of which
crossesover the other, and each crossing can be assigned asigned crossing number, ±1,
according to a right-hand rule. This signed crossing number encodes information about the
relative orientation of the overcrossing and undercrossing curve segments. The writhe of the
curve is the sum of these signed crossing numbers, averaged over all projection directionsµ.
(Directions in which one or more crossings are not transverse have measure zero and do not
contribute to the average.)

One of the standard models of ring polymers is lattice polygons. Given a three-dimensional
lattice (such as the simple cubic lattice,Z3) alattice polygonis an embedding of a simple closed
curve in this lattice. From the graph-theoretic point of view, a lattice polygon is a connected
subgraph of the lattice with all vertices having degree two. Ifpn is the number of lattice
polygons (modulo translation) withn vertices in the simple cubic lattice, thenpn = 0 if n is
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odd,p4 = 3, p6 = 22,p8 = 207, etc. Some information is available about the behaviour of
pn for largen and, in particular, Hammersley (1961) showed that the limit

0< lim
n→∞ n

−1 logpn = κ <∞ (1.1)

exists.
Similar results hold for other lattices. For the face-centred cubic (fcc) latticep3 = 8,

p4 = 33, p5 = 84, etc, and (1.1) still holds but with a different value of the connective
constantκ.

There are several results available about the writhe of lattice polygons in three dimensions.
Janse van Rensburget al (1993) studied the expectation of the absolute value of the writhe
〈|Wr|〉 of polygons in the simple cubic lattice and showed that there is a positive constantA

such that

〈|Wr|〉 > A√n (1.2)

for sufficiently largen. Katritch et al (1996, 1997) and Janse van Rensburget al (1997)
have studied the mean writhe of simple closed curves of fixed knot type, and Vologodskii
and Cozzarelli (1993) and Gee and Whittington (1997) have investigated the writhe of the
components of a link as a function of link type.

Calculating numerically the writhe of a simple closed curve inR3 is not easy and, although
writhe can be defined as a line integral, its value is usually computed by a stochastic numerical
approximation. In an important paper Lacher and Sumners (1991) showed that for polygons
in Z3 the computation of the writhe could be converted into a computation involving only
four linking numbers. (Their result implies that four times the writhe is an integer so that all
polygons inZ3 have rational writhe.) Lacher and Sumners made considerable use of pushoffs,
and especially of the idea of aspatial pushoff, which is a translate of the curve through a small
distance in a given direction. We shall also make extensive use of spatial pushoffs. Lacher
and Sumners showed that the writhe is the average of the linking number of the polygon with
its pushoffs in all possible directions (i.e. all points on a reference 2-sphere). This converts the
problem into a topological question. Within any of the eight octants defined by the coordinate
planes inZ3 the linking number is independent of the particular pushoff direction, so the
writhe is the mean of the linking numbers of the polygon with pushoffs into the eight octants.
Moreover, mutually antipodal octants yield the same linking number so the writhe is given by
the mean of the linking numbers with pushoffs into four non-mutually antipodal octants. Since
linking number is an integer, four times the writhe is an integer. The Lacher–Sumners theorem
plays an important role in the proof by Janse van Rensburget al (1993) of the inequality (1.2),
as well as in numerical work on the writhe of polygons in the simple cubic lattice. It has also
been used to prove a result about the writhe of closed ribbons inZ3 (Janse van Rensburget al
1996).

The Lacher–Sumners result raises several interesting questions:

(1) Can the writhe be calculated for polygons on other lattices by computing linking numbers
with a finite number of pushoffs?

(2) Is the writhe of a lattice polygon always rational for any lattice?

In this paper we shall show that for the fcc lattice the calculation of the writhe can be
converted into a calculation of linking numbers with a small number of pushoffs, but that
there are polygons with rational writhe and polygons with irrational writhe. Moreover, the
probability that a randomly chosen polygon has rational writhe goes to zero asngoes to infinity.
We also show that (1.2) holds for the fcc lattice.
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2. Computing the writhe of a polygon in the fcc lattice

We first give a description of the fcc lattice which will be needed later. LetV (Z3) be the vertex
set ofZ3, i.e. the set of points inR3 with integer coordinates. Alternate vertices of this set
comprise the vertices of the fcc lattice. We choose the setV ⊂ V which contains

(1) vertices which have exactly two odd coordinates and
(2) vertices which have no odd coordinates,

and add edges between nearest-neighbour pairs of vertices inV. Each vertex has 12 nearest
neighbours and the edges are of length

√
2. The vertex figure is a cuboctahedron so that each

vertex is surrounded by eight tetrahedra and six octahedra. All faces of the lattice are triangles,
each belonging to one tetrahedron and to one octahedron.

Letα0 be the solid angle at the vertex of a regular tetrahedron and letβ0 be the solid angle
at the vertex of an octahedron. Clearly

8α0 + 6β0 = 4π. (2.1)

The solid angleα0 can be calculated as the area of the spherical triangle of unit radius whose
sides are the arcs of great circles formed by the intersection of the sphere and the tetrahedron.
Since the dihedral angle of a regular tetrahedron is sec−1 3,α0 = 3 sec−1 3− π .

Let S2 be the 2-sphere inR3 of radiusε < 1/2. S2 is the space of pushoffs. The
writheWr(ω) of a polygonω is the average over all pushoff directionsµ in S2 of the linking
numberLk(ω, ω(µ)) of ω and its pushoffω(µ) by a small distanceε in directionµ (Lacher
and Sumners 1991). We shall show thatLk(ω, ω(µ)) is independent ofµ for certain sets of
directions. In factLk(ω, ω(µ)) is independent of the pushoff direction within each of the solid
angles corresponding to the interiors of the eight tetrahedral regions and within each of eight
subregions of each of the six octahedra. Moreover, we show that this subdivision is optimal.

A typical octahedral region is defined by the solid angle subtended at the origin by the
square whose vertices are the four lattice points(1, 1, 0), (1,−1, 0), (1, 0, 1) and(1, 0,−1).
We subdivide this region into eight congruent suboctahedra bounded by four planes defined
by the triples of points

(1) (0, 0, 0), (1, 0, 1) and(1, 0,−1)
(2) (0, 0, 0), (1, 1, 0) and(1,−1, 0)
(3) (0, 0, 0), (1, 1/2, 1/2) and(1,−1/2,−1/2)
(4) (0, 0, 0), (1, 1/2,−1/2) and(1,−1/2, 1/2).

A typical suboctahedral region is defined by the angle subtended at the origin by the triangle
with vertices(1, 0, 0), (1, 1, 0) and(1, 1/2, 1/2).

Lemma 2.1. If µ lies in the interior of any tetrahedral or suboctahedral region onS2 thenω
andω(µ) are disjoint space curves andLk(ω, ω(µ)) is defined.

Proof. Consider the tetrahedron with vertices(0, 0, 0), (1, 1, 0), (1, 0, 1) and(0, 1, 1). We
consider anε-pushoff,ε < 1/2, into the interior of this tetrahedral region,T1, in a direction
from (0, 0, 0) towards the point (α + β, 1− α, 1− β) so that the point(x, y, z) becomes the
point (x + (α + β)δ, y + (1− α)δ, z + (1− β)δ), with α > 0,β > 0,α + β < 1 and

δ <
1

2

1√
(α + β)2 + (1− α)2 + (1− β)2

6
√

3

4
. (2.2)
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Let (x, y, z) be a point on a lattice polygonω. Then eitherx, y andz are all integers or one of
these is an integer and the other two differ from an integer by the same amount. Without loss of
generality, takex ∈ Z so thatx = a, |y − b| = |z− c| = η wherea, b, c ∈ Z and 06 η < 1.
Now assume, to obtain a contradiction, that the polygonω and its pushoffω(µ) are not disjoint.
That is, at least one point on the pushoff either has all integer coordinates or has one coordinate
which is an integer and the other two differ from an integer by the same amount. Each point
on the pushoff has coordinates of the form(a + (α +β)δ, b± η + (1− α)δ, c± η + (1− β)δ).
Whenη = 0 none of these coordinates is an integer so we can assume thatη > 0 and, without
loss of generality, takeη = (1−α)δ orη+ (1−α)δ = 1, so that they-coordinate is an integer.
Then either(α + β)δ = ±η + (1− β)δ or 1− (α + β)δ = ±η + (1− β)δ. This gives several
cases which we handle separately:

(1) η = (1− α)δ and(α +β)δ = ±η + (1− β)δ imply that either(α +β) = 1 orβ = 0, both
of which are impossible;

(2) η = (1− α)δ and 1− (α + β)δ = ±η + (1− β)δ imply that eitherδ = 1/2 orαδ = 1/2,
both of which are impossible;

(3) η = 1 − (1 − α)δ and (α + β)δ = ±η + (1 − β)δ imply that eitherβδ = 1/2 or
(1− α − β)δ = 1/2, both of which are impossible;

(4) η = 1− (1− α)δ and 1− (α + β)δ = ±η + (1− β)δ imply that eitherαδ = 0 or δ = 1,
both of which are impossible.

This gives the required contradiction and shows that every polygon is disjoint with its
ε-pushoff into the tetrahedral regionT1. The remaining tetrahedral regions can be handled by
a symmetry argument. Consider a tetrahedral regionT2. Suppose there exists a direction inT2

for which the polygon and its pushoff are not disjoint. By a symmetry operation of the lattice
this pair can be converted to a (different) polygon and its pushoff intoT1. Then this pair would
not be disjoint and we have a contradiction.

The pushoffs into octahedral regions can be handled similarly. Consider the suboctahedral
region defined by the vertices(0, 0, 0), (1, 0, 0), (1, 1, 0)and(1, 1/2, 1/2). Consider a pushoff
into the interior of this region towards the point (1, (1− α + β)/2, (1− α − β)/2), so that
the point(x, y, z) becomes(x + δ, y + δ(1− α + β)/2, z + δ((1− α − β)/2), with α, β > 0,
α + β < 1 and

δ <
1

2

√
2√

3 +α2 + β2 − 2α
6 1

2
. (2.3)

Without loss of generality we can take(a, b±η, c±η) as a typical point of the polygonω, and
the corresponding point on the pushoff is(a+δ, b±η+δ(1−α+β)/2, c±η+δ(1−α−β)/2).
To obtain a contradiction we assume that the polygon and its pushoff have at least one common
point. If η = 0 no coordinate on the pushoff is an integer so we can takeη > 0. Without
loss of generality, we take±η + δ(1− α + β)/2 ∈ Z so that eitherη = δ(1− α + β)/2 or
η = 1−δ(1−α+β)/2. Then, in a similar way to the arguments given above for the tetrahedral
caseT1, one can check that all the possible cases lead to a contradiction, showing that each
polygon and its pushoff are disjoint. A symmetry argument extends this to pushoffs in all the
remaining suboctahedral regions. �

The subdivision of the octahedra into eight subcells is optimal since we have found
examples of polygons such that the linking number of the polygon and its pushoff changes
value when the direction crosses from one subcell to a neighbouring subcell.
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Lemma 2.2. The linking numberLk(ω, ω(µ)) is independent of the directionµ for all
directions in the interior of a tetrahedral region and for all directions in the interior of a
suboctahedral region.

Proof. Since any two pushoffs,ω(µ1) andω(µ2), within the interior of a tetrahedral region
are ambient isotopic to each other in the complement of the original polygonal curveω (see
Lacher and Sumners 1991), the linking numbers of each of these pushoffs with the polygonω

are equal. A similar argument applies for the interior of a suboctahedral region. �

Lemma 2.3. Provided thatµ is in the interior of a tetrahedral or suboctahedral region onS2,
Lk(ω, ω(µ)) = Lk(ω, ω(−µ)).

Proof. The pair of polygons{ω,ω(µ)} is ambient isotopic to the pair of polygons{ω(−µ), ω}.
(If ω is translated toω(−µ) the same translation takesω(µ) to ω.) The result then follows
from the symmetry of linking numbers inR3. �

If we writeLTi , i = 1, . . . ,4, forLk(ω, ω(µ)) whenµ is a direction in the interior of the
ith of four non-mutually antipodal tetrahedral regions, andLOij , i = 1, 2, 3, j = 1, . . . ,8, for
Lk(ω, ω(µ)) whenµ is a direction in the interior of thej th of eight suboctahedral regions of
theith of three non-mutually antipodal octahedral regions, then we have the following theorem.

Theorem 2.4.The writhe of a polygonω on the fcc lattice is given by

Wr(ω) = α0
∑4

i=1L
T
i + (β0/8)

∑3
i=1

∑8
j=1L

O
ij

2π
. (2.4)

Proof. This follows immediately from lemmas 2.1, 2.2 and 2.3. �

3. Asymptotic behaviour of the writhe

In this section we examine the behaviour of the writhe of a polygon withn vertices asn goes
to infinity and show that the probability that the writhe is rational goes to zero.

We first note the following lemma.

Lemma 3.1. The angleθ = sec−13 is not a rational multiple ofπ .

Proof. Suppose the contrary. Definez = eiθ = (1 + i2
√

2)/3. z is an algebraic
number satisfying the unique irreducible polynomial equation with integral coefficients,
3z2 − 2z + 3 = 0, so thatz is not an algebraic integer. However, ifθ is a rational multiple
of π then z must be a root of unity satisfying an equationzN − 1 = 0 for some positive
integerN . This implies thatz must be an algebraic integer (Nivenet al 1991, ch 9, especially
theorem 9.10) and we have the required contradiction. �

From theorem 2.4 it is easy to show that the writhe can be written as

Wr(ω) = sec−1 3

4π

(
6

4∑
i=1

LTi −
3∑
i=1

8∑
j=1

LOij

)
+

1

8

( 3∑
i=1

8∑
j=1

LOij − 4
4∑
i=1

LTi

)
. (3.1)

Using this, lemma 3.1 implies thatWr(ω) is rational if
3∑
i=1

8∑
j=1

LOij = 6
4∑
i=1

LTi (3.2)
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and irrational otherwise. Clearly any planar polygon has rational writhe and we give the
following example of a polygon with irrational writhe. Consider the polygonω0 with vertices
having coordinates(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 2,−1), (4, 1,−1), (3, 1, 0), (2, 0, 0) and
(1, 0,−1). A calculation using (2.4) shows thatWr(ω0) = α0/2π ≡ ψ . (Since the linking
numbers do not satisfy (3.2)ω0 has irrational writhe.) The polygonω∗0 which is the reflection
of ω0 in the planez = 0 clearly has writhe equal to−ψ . We note that the polygon with
vertices(1, 1, 0), (2, 2, 0), (3, 2,−1), (4, 1,−1), (3, 1, 0) and(2, 0, 0) also has writheψ and
its mirror image has writhe−ψ .

We next show that polygons with rational writhe become rare asn goes to infinity. To
prove this we need a number of lemmas.

Lemma 3.2. Any polygonω containing a translate of the walkw0 with vertices(0, 0, 0),
(1, 1, 0), (2, 2, 0), (3, 2,−1), (4, 1,−1), (3, 1, 0), (2, 0, 0) and(1,−1, 0) has writhe

Wr(ω) = Wr(ω1) +ψ (3.3)

whereω1 is the corresponding polygon with the walkw0 replaced by the walk with vertices
(0, 0, 0), (1, 1, 0), (2, 0, 0) and(1,−1, 0). Similarly, if the walkw0 is replaced by the walkw∗0
with vertices(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 2, 1), (4, 1, 1), (3, 1, 0), (2, 0, 0) and(1,−1, 0)
then the writhe ofω∗ containing a translate ofw∗0 is given by

Wr(ω∗) = Wr(ω1)− ψ. (3.4)

Proof. Considerω and its pushoffω′ through a small distance in the direction(−1,−1, 1). A
calculation shows that the linking numberLk(ω, ω′) = +1. The walkw0 and its pushoff have
three crossings, all of which are the same sign. Take a small 3-ball containing the parts ofw0

and its pushoff forming one of these crossings, and reverse the sign of the crossing by a move
lying entirely inside this 3-ball. This move decreases the linking number by 1. The resulting
pair of polygons is ambient isotopic to the pairω1 and its pushoffω′1 so that

Lk(ω, ω′) = Lk(ω1, ω
′
1) + 1. (3.5)

Similar arguments apply to all the remaining pushoffs where the linking number is non-zero
and the result (3.3) is then obtained after application of theorem 2.4. Equation (3.4) follows
by an analogous argument. �

Next we recall an important result due to Kesten (1963). Kesten’s original proof is for the
cubic lattice but the method can be adapted to work on other lattices, such as the fcc lattice.
Let C be a rectangular box with its corners being lattice vertices and let∂C be its boundary.
LetP be a walk contained inC but with its two vertices of degree one in∂C. LetC be the ball
pair (C, P ) in which all vertices ofC which are not vertices ofP are empty. Letcn(C, δ) be
the number ofn-edge self-avoiding walks which contain at mostbδnc translates ofC. Then
Kesten showed that there is a positive value ofδ (which depends onC andP ) such that

lim sup
n→∞

n−1 logcn(C; δ) < κ. (3.6)

That is, all except exponentially few sufficiently long walks contain a positive density of copies
of C. There is a corresponding result for polygons which we state as follows.

Lemma 3.3. For a fixed rectangular boxC and an undirected walkP which is contained in
C and has its two vertices of degree one in the boundary ofC, let C be the ball pair(C, P )
in which all vertices ofC which are not vertices ofP are empty. Letpn(C; δ) be the number
of n-edge polygons on which translates ofC occur less thanbδnc times. Then there exists a
positive value ofδ, which depends onC andP , such that

lim sup
n→∞

n−1 logpn(C; δ) < κ. (3.7)
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Proof. This follows from Kesten’s theorem for walks and the fact that polygons are not
exponentially rare compared to walks. �

Theorem 3.4.The probability that ann-edge polygon on the fcc lattice has rational writhe
goes to zero asn goes to infinity.

Proof. LetC be the rectangular box with corner vertices(0, 0,±1), (3, 3,±1), (5, 1,±1) and
(2,−2,±1). Let P be the undirected pattern corresponding to the subwalkw0 and letC be
the ball pair(C, P ) with the remainder ofC empty. LetP ∗ be the pattern consisting of the
subwalkw∗0 and letC∗ be the pair(C, P ∗)with the remainder ofC empty. Then, using Kesten’s
pattern theorem, for someε > 0 all except exponentially fewn-edge polygons contain at least
εn translates of the patternsP or P ∗. These two subwalks are distributed independently (and
binomially) in the translates ofC. The probability of preciselyk occurrences ofP among
the firstεn occurrences ofP or P ∗ is bounded above byA/

√
n for some positive constantA.

Consider a randomly chosen polygon withn edges containing at leastbεnc, the firstbεnc of
which containk translates ofP andk∗ translates ofP ∗. Lemma 3.3 implies that the writhe of
the polygon is given by

W = W0 + kψ − k∗ψ. (3.8)

If W0 is rational thenW is irrational unlessk = k∗ and this occurs with probability at most
A/
√
n. If W0 is irrational then there is at most one value ofk such thatW is rational and

again this occurs with probability at mostA/
√
n. Therefore, the probability that a polygon

has rational writhe goes to zero asn goes to infinity. �

Finally, we note the following result which is analogous to the result of Janse van Rensburg
et al (1993) for the simple cubic lattice.

Lemma 3.5. For sufficiently longn-edge polygons on the fcc lattice the expectation of the
absolute value of the writhe〈|Wr|〉 is at leastA

√
n for some positive constantA.

Proof. The proof follows from theorem 2.4, lemma 3.2 and a coin tossing argument analogous
to that given in Janse van Rensburget al (1993). (Each of the two patternsP andP ∗ (in their
respective ball pairsC, C∗) will appear with positive density on all except exponentially few
polygons. P andP ∗ will be binomially distributed in the translates ofC. The probability
that the sum of the writhe contributions from these patterns is within a constant times

√
n of

the writhe of the remainder of the polygon goes to zero asn goes to infinity, and the theorem
follows.) �

4. Discussion

We have shown that the writhe of a polygon on the fcc lattice can be calculated as a suitable
weighted average of its linking numbers with pushoffs in certain particular directions. This
result is an important tool for the numerical calculation of the writhe of polygons on this lattice
and is also useful in proofs of asymptotic results. We have shown that, as for polygons on
the simple cubic lattice, the expectation of the absolute value of the writhe of polygons on the
fcc lattice increases at least as fast as the square root of the number of edges in the polygon
but, unlike polygons on the simple cubic lattice, most polygons on the fcc cubic lattice have
irrational writhe.
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One can ask similar questions about other lattices. It is clear that if the vertex figure is
regular then each vertex of the lattice will be surrounded by congruent 3-cells (just as a vertex
of the simple cubic lattice is surrounded by eight congruent cubes). In this case the writhe
will be rational although each 3-cell might need to be divided into congruent subcells so that
the linking number of the polygon with its pushoff into one such subcell is independent of
the pushoff direction within the subcell. The body-centred cubic lattice is an example. Each
vertex is surrounded by six octahedra. If each octahedral region is divided into eight congruent
right-angled triangles then one can show that when a polygon is pushed off into the interior of
any one of these regions, the polygon and its pushoff are disjoint so that the linking number
is independent of the pushoff direction within each of these regions. It follows that 24 times
the writhe is an integer. If the vertex figure is not regular but has two sets of congruent faces
then the writhe would still be rational if the ratio of the solid angles subtended at the centre
by the two types of faces were rational. Otherwise some polygons will have irrational writhe
and it might be possible to use a pattern theorem argument to show that polygons with rational
writhe are rare. For instance, thehexagonal close packingof spheres is not a lattice but can be
treated using these arguments. The vertex figure has eight triangles and six squares, as does
the cuboctahedron, but the relative arrangement of the two types of faces is different. Each
vertex is surrounded by eight tetrahedra and six octahedra, so a theorem similar to theorem 2.4
will apply with different pushoff directions. Presumably a pattern theorem could be proved
for this system so that we would expect similar results to theorem 3.4 and lemma 3.5, although
we have not checked the details. Other lattices (and graphs with some symmetry which are
not lattices) could be handled by similar arguments.
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